# Overview
# Key Considerations
## Approaches for Chunking in RAG #flashcard
### Character Splitting
<!--ID: 1751507777246-->
### Recursive Character Text Splitting
### Document Specific Splitting
HTML, Markdown, JSON, Python, JS, etc...
### Semantic Chunking
Chunk based on semantics, rather than chunk sizes or document structure.
### Proposition Chunking
[The Propositions Method: Enhancing Information Retrieval for AI Systems](https://diamantai.substack.com/p/the-propositions-method-enhancing?r=336pe4&utm_campaign=post&utm_medium=web&triedRedirect=true)
### Agentic Chunking
### Late Chunking
[Chunk Better With Chonkie: How Late Chunking Improves Text Segmentation \| by Michael Ryaboy \| Towards AI](https://pub.towardsai.net/easy-late-chunking-with-chonkie-7f05e5916997)
# Pros
# Cons
# Use Cases
# Products
- [GitHub - chonkie-ai/chonkie: 🦛 CHONK your texts with Chonkie ✨ - The no-nonsense RAG chunking library](https://github.com/chonkie-ai/chonkie)
# References
- [RetrievalTutorials/tutorials/LevelsOfTextSplitting/5\_Levels\_Of\_Text\_Splitting.ipynb at main · FullStackRetrieval-com/RetrievalTutorials · GitHub](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb)