# Classification Metrics ([[Classification Systems]]) - [[Accuracy]] #flashcard - [[Precision]] #flashcard <!--ID: 1750622811410--> - [[Recall]] #flashcard - [[F1 Score]] - [[ROC-AUC]] - [[PR-AUC]] - [[Confusion Matrix]] - [[Log Loss]] - [[Pearson Correlation Coefficient]] - [[Natural Language Processing (NLP)]] - [[GLUE Benchmark]] # Ranking Metrics ([[Recommendation Systems]]) - [[Normalized Discounted Cumulative Gain (NDCG)]] - [[Mean Average Precision (MAP)]] - [[Mean Reciprocal Rank (MRR)]] # GenAI Metrics ([[Generative AI Systems]]) ## Image Generation Metrics - [[Frechet Inception Distance (FID)]] - [[CLIP Score]] ## Text Generation Metrics - [[Perplexity Metric]] - [[BLEU]] - [[ROUGE]] - [[BERTScore]] # Regression Metrics - [[Mean Absolute Error (MAE)]] - [[Mean Squared Error]] - [[R-squared]] <!--ID: 1750622811413--> ``` """ K-fold """ from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() scores = cross_val_score(model, X_train, y_train, cv=10) print(scores.mean()) """ Accuracy """ from sklearn.metrics import accuracy_score y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) """ Precision """ from sklearn.metrics import precision_score precision = precision_score(y_test, y_pred, average='binary') print('Precision:', precision) """ Recall """ from sklearn.metrics import recall_score recall = recall_score(y_test, y_pred, average='binary') print('Recall:', recall) """ F1 Score """ from sklearn.metrics import f1_score f1 = f1_score(y_test, y_pred, average='binary') print('F1 Score:', f1) """ ROC-AUC """ from sklearn.metrics import roc_auc_score roc_auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) print('ROC-AUC:', roc_auc) """ Confusion Matrix """ from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred) print('Confusion Matrix:\n', conf_matrix) """ Mean Absolute Error (MAE) """ from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_test, y_pred) print('Mean Absolute Error:', mae) """ Mean Squared Error (MSE) """ from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_test, y_pred) print('Mean Squared Error:', mse) """ R-squared """ from sklearn.metrics import r2_score r2 = r2_score(y_test, y_pred) print('R-squared:', r2) """ Log Loss """ from sklearn.metrics import log_loss logloss = log_loss(y_test, model.predict_proba(X_test)) print('Log Loss:', logloss) ```